1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
use std::collections::HashMap;
use crate::core::{EdgeId, NodeId, TransitEdge, TransitNode};
use geo::{Coord, CoordNum, EuclideanDistance};
use petgraph::{
graph::EdgeIndex,
graph::{NodeIndex, UnGraph},
};
/// Represents the physical layout of the transit network.
///
/// `PhysicalGraph` is an undirected graph where each node represents a transit node (a point in the transit network where a vehicle can stop) and each edge represents a transit edge (a path between two transit nodes).
/// The `PhysicalGraph` uses the `UnGraph` structure from the `petgraph` crate to internally represent this data. The `PhysicalGraph` maintains mappings between `NodeId`s and `NodeIndex`es (from `petgraph`), allowing for efficient conversion between the two.
///
/// # Examples
///
/// Creating a new `PhysicalGraph` and adding a `TransitNode`:
/// ```
/// use transit_grid::core::TransitNode;
/// use transit_grid::prelude::PhysicalGraph;
/// use geo::{coord, Coord};
///
/// let mut graph: PhysicalGraph<Coord, f64> = PhysicalGraph::new();
/// let node = TransitNode { id: 1, location: coord! { x:0.0, y:0.0 } };
/// graph.add_transit_node(node);
/// ```
///
/// Adding a `TransitEdge` to the `PhysicalGraph`:
/// ```
/// use transit_grid::core::{TransitNode, TransitEdge};
/// use transit_grid::prelude::PhysicalGraph;
/// use geo::{coord, Coord, LineString};
///
/// let mut graph: PhysicalGraph<Coord, f64> = PhysicalGraph::new();
/// let node1 = TransitNode { id: 1, location: coord! { x:0.0, y:0.0 } };
/// let node2 = TransitNode { id: 2, location: coord! { x:1.0, y:1.0 } };
/// let node1_id = graph.add_transit_node(node1);
/// let node2_id = graph.add_transit_node(node2);
/// let edge = TransitEdge {
/// id: 1,
/// source: 1,
/// target: 2,
/// length: 1.0,
/// path: LineString(vec![coord! { x:0.0, y:0.0 }, coord! { x:1.0, y:1.0 }]),
/// };
/// graph.add_transit_edge(edge);
/// ```
#[derive(Debug, Clone)]
pub struct PhysicalGraph<R, T: CoordNum> {
/// Underlying undirected graph.
pub graph: UnGraph<TransitNode<R>, TransitEdge<T>, u32>,
/// Mapping of NodeId to petgraph's NodeIndex.
id_to_index: HashMap<NodeId, NodeIndex>,
/// Mapping of petgraph's NodeIndex to NodeId.
index_to_id: HashMap<NodeIndex, NodeId>,
}
impl<R: Copy, T: CoordNum> PhysicalGraph<R, T> {
/// Creates a new, empty `PhysicalGraph`.
pub fn new() -> Self {
PhysicalGraph {
graph: UnGraph::<TransitNode<R>, TransitEdge<T>, u32>::new_undirected(),
id_to_index: HashMap::new(),
index_to_id: HashMap::new(),
}
}
/// Converts a `NodeIndex` to a `NodeId`.
///
/// This method provides a way to map from the petgraph's `NodeIndex` to
/// the `NodeId` used in the `TransitNode`.
///
/// # Arguments
///
/// * `index` - The `NodeIndex` to be converted.
///
/// # Returns
///
/// * `NodeId` - The corresponding `NodeId` of the provided `NodeIndex`.
///
/// # Example
///
/// ```
/// use transit_grid::prelude::PhysicalGraph;
/// use transit_grid::core::TransitNode;
/// use geo::{coord, Coord};
///
/// let mut graph: PhysicalGraph<Coord, f64> = PhysicalGraph::new();
/// let node = TransitNode { id: 1, location: coord! { x:0.0, y:0.0 } };
/// let node_index = graph.add_transit_node(node);
/// let node_id = graph.index_to_id(node_index);
/// assert_eq!(node_id, Some(&1));
/// ```
pub fn index_to_id(&self, index: NodeIndex) -> Option<&NodeId> {
self.index_to_id.get(&index)
}
/// Converts a `NodeId` to a `NodeIndex`.
///
/// This method provides a way to map from a `NodeId` used in the `TransitNode` to
/// the petgraph's `NodeIndex`.
///
/// # Arguments
///
/// * `id` - The `NodeId` to be converted.
///
/// # Returns
///
/// * `NodeIndex` - The corresponding `NodeIndex` of the provided `NodeId`.
///
/// # Example
///
/// ```
/// use transit_grid::prelude::PhysicalGraph;
/// use transit_grid::core::TransitNode;
/// use geo::{coord, Coord};
///
/// let mut graph: PhysicalGraph<Coord, f64> = PhysicalGraph::new();
/// let node = TransitNode { id: 1, location: coord! { x:0.0, y:0.0 } };
/// let node_index = graph.add_transit_node(node);
/// let queried_index = graph.id_to_index(1);
/// assert_eq!(Some(&node_index), queried_index);
/// ```
pub fn id_to_index(&self, id: NodeId) -> Option<&NodeIndex> {
self.id_to_index.get(&id)
}
/// Adds a `TransitNode` to the `PhysicalGraph`.
///
/// # Example
/// ```
/// use transit_grid::prelude::PhysicalGraph;
/// use transit_grid::core::TransitNode;
/// use geo::{coord, Coord};
///
/// let mut graph: PhysicalGraph<Coord, f64> = PhysicalGraph::new();
/// let node = TransitNode { id: 1, location: coord! { x:0.0, y:0.0 } };
/// graph.add_transit_node(node);
/// ```
pub fn add_transit_node(&mut self, node: TransitNode<R>) -> NodeIndex {
let index = self.graph.add_node(node);
self.id_to_index.insert(node.id, index);
self.index_to_id.insert(index, node.id);
index
}
/// Adds a `TransitEdge` to the `PhysicalGraph`.
///
/// # Example
/// ```
/// use transit_grid::prelude::PhysicalGraph;
/// use transit_grid::core::{TransitNode, TransitEdge};
/// use geo::{coord, Coord, LineString};
/// use petgraph::csr::IndexType;
///
/// let mut graph: PhysicalGraph<Coord, f64> = PhysicalGraph::new();
/// let node1 = TransitNode { id: 1, location: coord! { x:0.0, y:0.0 } };
/// let node2 = TransitNode { id: 2, location: coord! { x:1.0, y:1.0 } };
///
/// let node1_id = graph.add_transit_node(node1);
/// let node2_id = graph.add_transit_node(node2);
///
/// let edge = TransitEdge {
/// id: 1,
/// source: 1,
/// target: 2,
/// length: 1.0,
/// path: LineString(vec![coord! { x:0.0, y:0.0 }, coord! { x:1.0, y:1.0 }]),
/// };
///
/// graph.add_transit_edge(edge);
/// ```
pub fn add_transit_edge(&mut self, edge: TransitEdge<T>) -> EdgeIndex {
let from = self.id_to_index(edge.source);
let to = self.id_to_index(edge.target);
if let (Some(from), Some(to)) = (from, to) {
self.graph.add_edge(*from, *to, edge)
} else {
panic!("Invalid node ID")
}
}
/// Returns a reference to the `TransitEdge` connecting the two nodes specified by `node1` and `node2`.
///
/// # Arguments
///
/// * `node1` - The `NodeId` of the first node.
/// * `node2` - The `NodeId` of the second node.
///
/// # Returns
///
/// A reference to the `TransitEdge` connecting `node1` and `node2`. This function will panic if there is no edge between the nodes.
///
/// # Panics
///
/// This function will panic in the following cases:
///
/// * If `node1` or `node2` are not valid node IDs in the graph.
/// * If there is no edge between `node1` and `node2`.
pub fn get_transit_edge(&self, node1: NodeId, node2: NodeId) -> Option<&TransitEdge<T>> {
let node1_index = self.id_to_index(node1);
let node2_index = self.id_to_index(node2);
if let (Some(node1_index), Some(node2_index)) = (node1_index, node2_index) {
if let Some(edge_index) = self.graph.find_edge(*node1_index, *node2_index) {
self.graph.edge_weight(edge_index)
} else {
None
}
} else {
None
}
}
/// Returns a reference to the `TransitEdge` with the specified `EdgeId`.
pub fn get_transit_edge_by_id(&self, edge_id: EdgeId) -> Option<&TransitEdge<T>> {
self.graph
.edge_references()
.find(|edge| edge.weight().id == edge_id)
.map(|edge| edge.weight())
}
/// Repairs a physical edge in the `PhysicalGraph` based on its nodes' locations.
///
/// # Arguments
///
/// * `edge` - The `TransitEdge` to be repaired.
///
/// # Example
///
/// ```
/// use transit_grid::prelude::PhysicalGraph;
/// use transit_grid::core::{TransitNode, TransitEdge};
/// use geo::{coord, Coord, LineString};
///
/// let mut graph: PhysicalGraph<Coord, f64> = PhysicalGraph::new();
/// let node1 = TransitNode { id: 1, location: coord! { x:0.0, y:0.0 } };
/// let node2 = TransitNode { id: 2, location: coord! { x:1.0, y:1.0 } };
///
/// let node1_id = graph.add_transit_node(node1);
/// let node2_id = graph.add_transit_node(node2);
///
/// let mut edge = TransitEdge {
/// id: 1,
/// source: 1,
/// target: 2,
/// length: 1.0,
/// path: LineString(vec![coord! { x:1.0, y:1.0 }, coord! { x:0.0, y:0.0 }]), // Note that the direction is initially reversed
/// };
///
/// graph.add_transit_edge(edge.clone());
/// graph.repair_edge(1, 2);
/// let edge = graph.get_transit_edge(1, 2).unwrap();
/// assert_eq!(
/// edge.path,
/// LineString(vec![Coord { x: 0.0, y: 0.0 }, Coord { x: 1.0, y: 1.0 }])
/// );
///
/// // After repair, the edge path should be from 0,0 to 1,1
/// //assert_eq!(edge.path.0.first().unwrap(), &coord! { x:0.0, y:0.0 });
/// //assert_eq!(edge.path.0.last().unwrap(), &coord! { x:1.0, y:1.0 });
/// ```
pub fn repair_edge(&mut self, node1: NodeId, node2: NodeId)
where
R: EuclideanDistance<T, Coord<T>>,
{
let node1_index = self.id_to_index(node1);
let node2_index = self.id_to_index(node2);
if let (Some(node1_index), Some(node2_index)) = (node1_index, node2_index) {
let from_node_location = {
let from_node: &TransitNode<R> = self.graph.node_weight(*node1_index).unwrap();
from_node.location
};
let edge_index = self.graph.find_edge(*node1_index, *node2_index).unwrap();
let edge = self.graph.edge_weight_mut(edge_index).unwrap();
let first_point = edge.path.0.first().unwrap();
let last_point = edge.path.0.last().unwrap();
let dist_to_first = from_node_location.euclidean_distance(first_point);
let dist_to_last = from_node_location.euclidean_distance(last_point);
if dist_to_first > dist_to_last {
edge.path.0.reverse();
}
}
}
}
impl<R: Copy, T: CoordNum> Default for PhysicalGraph<R, T> {
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
mod tests {
use super::*;
use geo::{coord, Coord, LineString};
#[test]
fn test_graph() {
let mut graph = PhysicalGraph::new();
let node1 = TransitNode {
id: 1,
location: coord! { x:0.0, y:0.0 },
};
let node2 = TransitNode {
id: 2,
location: coord! { x:1.0, y:1.0 },
};
let node3 = TransitNode {
id: 3,
location: coord! { x:1.0, y:1.0 },
};
let _node1_id = graph.add_transit_node(node1);
let _node2_id = graph.add_transit_node(node2);
let _node3_id = graph.add_transit_node(node3);
let edge = TransitEdge {
id: 1,
source: 1,
target: 2,
length: 1.0,
path: LineString(vec![coord! { x:0.0, y:0.0 }, coord! { x:1.0, y:1.0 }]),
};
let _ = graph.add_transit_edge(edge);
assert_eq!(graph.graph.node_count(), 3);
assert_eq!(graph.graph.edge_count(), 1);
assert!(graph.get_transit_edge(1, 2).is_some());
assert!(graph.get_transit_edge(1, 3).is_none());
}
#[test]
fn test_index_to_id() {
let mut graph = PhysicalGraph::<Coord, f64>::new();
let node1 = TransitNode {
id: 1,
location: coord! { x:0.0, y:0.0 },
};
let node2 = TransitNode {
id: 2,
location: coord! { x:1.0, y:1.0 },
};
let node1_index = graph.add_transit_node(node1);
let node2_index = graph.add_transit_node(node2);
let node1_id = graph.index_to_id(node1_index);
let node2_id = graph.index_to_id(node2_index);
assert_eq!(node1_id, Some(&1));
assert_eq!(node2_id, Some(&2));
}
#[test]
fn test_id_to_index() {
let mut graph = PhysicalGraph::<Coord, f64>::new();
let node1 = TransitNode {
id: 1,
location: coord! { x:0.0, y:0.0 },
};
let node2 = TransitNode {
id: 2,
location: coord! { x:1.0, y:1.0 },
};
let node1_index = graph.add_transit_node(node1);
let node2_index = graph.add_transit_node(node2);
let queried_node1_index = graph.id_to_index(1);
let queried_node2_index = graph.id_to_index(2);
assert_eq!(Some(&node1_index), queried_node1_index);
assert_eq!(Some(&node2_index), queried_node2_index);
}
#[test]
fn test_default() {
let graph: PhysicalGraph<u32, f64> = PhysicalGraph::default();
assert_eq!(graph.graph.node_count(), 0);
assert_eq!(graph.graph.edge_count(), 0);
}
#[test]
fn test_repair_physical() {
let mut graph = PhysicalGraph::<Coord, f64>::new();
let node1 = TransitNode {
id: 1,
location: Coord { x: 0.0, y: 0.0 },
};
let node2 = TransitNode {
id: 2,
location: Coord { x: 1.0, y: 1.0 },
};
graph.add_transit_node(node1);
graph.add_transit_node(node2);
let edge = TransitEdge {
id: 1,
source: 1,
target: 2,
length: 1.0,
path: LineString(vec![Coord { x: 1.0, y: 1.0 }, Coord { x: 0.0, y: 0.0 }]),
};
graph.add_transit_edge(edge.clone());
graph.repair_edge(1, 2);
let edge = graph.get_transit_edge(1, 2).unwrap();
assert_eq!(
edge.path,
LineString(vec![Coord { x: 0.0, y: 0.0 }, Coord { x: 1.0, y: 1.0 }])
);
}
}