1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
use std::collections::{HashMap, HashSet};
use petgraph::{
stable_graph::{EdgeIndex, NodeIndex, StableDiGraph},
visit::EdgeRef,
Direction,
};
use crate::core::{Accessability, EdgeId, NodeId};
use super::{TopoEdge, TopoNode};
/// Represents the topological graph of a transit network as a skew-symmetric graph.
///
/// A `TopologyGraph` is a directed graph where each node in the topological graph
/// maps to a node in the physical graph. This is particularly useful for scenarios
/// such as rail switches where the directionality of edges matters.
///
/// # Skew-Symmetric Model
///
/// The `TopologyGraph` struct uses a skew-symmetric model based on the definition by Goldberg & Karzanov (1996).
/// In this model, let `G = (V, E)` be the directed graph with a function `σ` mapping vertices of `G` to other vertices,
/// satisfying the following properties:
///
/// 1. For every vertex `v`, `σ(v)` ≠ `v`.
/// 2. For every vertex `v`, `σ(σ(v))` = `v`.
/// 3. For every edge `(u, v)`, `(σ(v), σ(u))` must also be an edge.
///
/// In the context of `TopologyGraph`,
/// * For each node `v` in `V`, there are two nodes in `V_t`, denoted as `v_entry` and `v_exit`.
/// * For each edge `(u, v)` in `E`, there are two directed edges in `E_t`: one from `u_exit` to `v_entry` and one from `v_exit` to `u_entry`.
///
/// Mathematically,
/// * `V_t = {v_entry, v_exit | v ∈ V}`
/// * `E_t = {(u_exit, v_entry), (v_exit, u_entry) | (u, v) ∈ E}`
///
/// # Bigroup Algebraic Structure (Additional Information)
///
/// According to Dr. R. Muthuraj and P. M. Sitharselvam, M. S. Muthuraman (2010), a set `G` with two binary operations `+` and `*`
/// is called a bigroup if there exist two proper subsets `G1` and `G2` of `G` such that `G = G1 ∪ G2`.
///
#[derive(Debug, Clone)]
pub struct TopologyGraph {
/// the inner graph
pub graph: StableDiGraph<TopoNode, TopoEdge, u32>,
id_to_index: HashMap<NodeId, (NodeIndex, NodeIndex)>,
index_to_id: HashMap<NodeIndex, NodeId>,
}
impl TopologyGraph {
/// Creates a new instance of `TopologyGraph`.
pub fn new() -> Self {
TopologyGraph {
graph: StableDiGraph::<TopoNode, TopoEdge, u32>::new(),
id_to_index: HashMap::new(),
index_to_id: HashMap::new(),
}
}
/// Returns the `NodeId` corresponding to a given `NodeIndex`.
///
/// This method is useful when you have the index of a node in the graph and you want to retrieve its identifier.
///
/// # Arguments
///
/// * `index` - The `NodeIndex` of the node.
///
/// # Returns
///
/// * `NodeId` - The identifier of the node corresponding to the input index.
///
/// # Panics
///
/// This function will panic if the `NodeIndex` does not exist in the graph.
pub fn index_to_id(&self, index: NodeIndex) -> Option<&NodeId> {
self.index_to_id.get(&index)
}
/// Returns the `NodeIndex` corresponding to a given `NodeId`.
///
/// This method is useful when you have the identifier of a node and you want to retrieve its index in the graph.
/// As each `NodeId` maps to two `TopoNode`s in the graph, this function returns a tuple of `NodeIndex`.
///
/// # Arguments
///
/// * `id` - The `NodeId` of the node.
///
/// # Returns
///
/// * A tuple of two `NodeIndex` values corresponding to the two `TopoNode`s for the input `NodeId`.
///
/// # Panics
///
/// This function will panic if the `NodeId` does not exist in the graph.
pub fn id_to_index(&self, id: NodeId) -> Option<&(NodeIndex, NodeIndex)> {
self.id_to_index.get(&id)
}
/// Adds a Node with a `NodeId` to the topological graph. This internally adds two `TopoNode`s to the graph.
///
/// # Arguments
///
/// * `node_id` - The `NodeId` to be added to the graph.
///
/// # Returns
///
/// * A tuple of two `TopoNodeId`s corresponding to the two `TopoNode`s added for the input `NodeId`.
pub fn add_node(&mut self, node_id: NodeId) -> (NodeIndex, NodeIndex) {
let topo_node1 = TopoNode {
id: NodeIndex::default(), // Temporary value; will be updated
node_id,
};
let topo_node1_id = self.graph.add_node(topo_node1);
self.graph.node_weight_mut(topo_node1_id).unwrap().id = topo_node1_id;
let topo_node2 = TopoNode {
id: NodeIndex::default(), // Temporary value; will be updated
node_id,
};
let topo_node2_id = self.graph.add_node(topo_node2);
self.graph.node_weight_mut(topo_node2_id).unwrap().id = topo_node2_id;
self.id_to_index
.insert(node_id, (topo_node1_id, topo_node2_id));
self.index_to_id.insert(topo_node1_id, node_id);
self.index_to_id.insert(topo_node2_id, node_id);
(topo_node1_id, topo_node2_id)
}
/// Adds a `TopoEdge` to the topological graph.
///
/// # Arguments
///
/// * `edge_id` - The `EdgeId` to be added to the graph.
/// * `from_node_id` - The `NodeId` from which the edge is originating.
/// * `to_node_id` - The `NodeId` to which the edge is pointing.
///
/// # Returns
///
/// * `TopoEdgeId` - The ID of the added edge.
pub fn add_edge(
&mut self,
edge_id: EdgeId,
from_node_id: NodeId,
to_node_id: NodeId,
) -> (EdgeIndex, EdgeIndex) {
let (from_topo_node_id1, from_topo_node_id2) =
*self.id_to_index.get(&from_node_id).unwrap();
let (to_topo_node_id1, to_topo_node_id2) = *self.id_to_index.get(&to_node_id).unwrap();
let from_topo_node_id = if self.has_incoming(from_topo_node_id1) {
from_topo_node_id2
} else {
from_topo_node_id1
};
let to_topo_node_id = if self.has_incoming(to_topo_node_id1) {
to_topo_node_id2
} else {
to_topo_node_id1
};
let from_node_id: NodeId = *self.index_to_id.get(&from_topo_node_id).unwrap();
let to_node_id: NodeId = *self.index_to_id.get(&to_topo_node_id).unwrap();
let topo_edge1 = TopoEdge {
id: EdgeIndex::new(0), // Temporary value; will be updated
from: from_node_id,
to: to_node_id,
edge_id,
};
let topo_edge1_id = self
.graph
.add_edge(from_topo_node_id, to_topo_node_id, topo_edge1);
self.graph.edge_weight_mut(topo_edge1_id).unwrap().id = topo_edge1_id;
let from_topo_node_id = self.get_other_toponode(from_topo_node_id).unwrap();
let to_topo_node_id = self.get_other_toponode(to_topo_node_id).unwrap();
let topo_edge2 = TopoEdge {
id: EdgeIndex::new(0), // Temporary value; will be updated
from: to_node_id,
to: from_node_id,
edge_id,
};
let topo_edge2_id = self
.graph
.add_edge(to_topo_node_id, from_topo_node_id, topo_edge2);
self.graph.edge_weight_mut(topo_edge2_id).unwrap().id = topo_edge2_id;
(topo_edge1_id, topo_edge2_id)
}
/// Checks if there are no edges in the specified direction leading to any of the nodes in the neighbors list.
///
/// # Arguments
///
/// * `topo_node_id` - The `NodeIndex` of the node to check.
/// * `neighbors` - A vector of `NodeId` that the node should not have edges towards in the given direction.
/// * `dir` - The direction of the edges to check (Outgoing or Incoming).
///
/// # Returns
///
/// * `bool` - True if none of the neighbors have an edge in the given direction to the node, otherwise false.
pub fn no_edges_in_direction(
&self,
topo_node_id: NodeIndex,
neighbors: Vec<NodeId>,
dir: Direction,
) -> bool {
// Convert the neighbors Vec into a HashSet for faster lookup
let neighbors_set: HashSet<_> = neighbors.into_iter().collect();
// Check for each neighbor of the node
for edge in self.graph.edges_directed(topo_node_id, dir) {
if neighbors_set.contains(&self.graph[edge.target()].node_id) {
// If any edge in the given direction leads to a node in the neighbors list, return false
return false;
}
}
// If we've gone through all edges and none lead to a node in the neighbors list, return true
true
}
/// Returns the `NodeIndex` of the `NodeId` that does not have any edge in the opposite direction leading to any node in `neighbors`.
///
/// # Arguments
///
/// * `node_id` - The ID of the node to check.
/// * `neighbors` - A vector of `NodeId`s to check.
/// * `dir` - The `Direction` in which to check the edges.
///
/// # Returns
///
/// * `Option<NodeIndex>` - The `NodeIndex` of the `NodeId` if it does not have any edge in the opposite direction leading to nodes in `neighbors`, otherwise `None`.
pub fn find_node_index_with_edges(
&self,
node_id: NodeId,
neighbors: Vec<NodeId>,
dir: Direction,
) -> Option<NodeIndex> {
let topo_node_ids = self.id_to_index.get(&node_id)?;
if self.no_edges_in_direction(topo_node_ids.0, neighbors.clone(), dir.opposite()) {
return Some(topo_node_ids.0);
}
if self.no_edges_in_direction(topo_node_ids.1, neighbors, dir.opposite()) {
return Some(topo_node_ids.1);
}
None
}
/// Returns the `NodeIndex` of the other `TopoNode` for a given `TopoNode`.
///
/// # Arguments
///
/// * `topo_node_id` - The `NodeIndex` of the `TopoNode`.
///
/// # Returns
///
/// * `Option<NodeIndex>` - The `NodeIndex` of the other `TopoNode` for the given `TopoNode`, if it exists.
pub fn get_other_toponode(&self, topo_node_id: NodeIndex) -> Option<NodeIndex> {
let node_id = self.index_to_id.get(&topo_node_id)?;
let topo_node_ids = self.id_to_index.get(node_id)?;
if topo_node_ids.0 == topo_node_id {
Some(topo_node_ids.1)
} else if topo_node_ids.1 == topo_node_id {
Some(topo_node_ids.0)
} else {
None
}
}
/// Adds an edge with a certain accessibility into the graph.
///
/// # Arguments
///
/// * `edge_id` - The identifier of the edge that should be added.
/// * `from_node_id` - The identifier of the node where the edge should start.
/// * `to_node_id` - The identifier of the node where the edge should end.
/// * `accessability` - The type of accessability of the edge. This can be either `ReachableNodes` or `UnreachableNodes`.
///
/// # Returns
///
/// A tuple of `EdgeIndex` values that were assigned to the newly created edges.
///
/// # Panics
///
/// The function will panic if it's unable to add an edge with the provided accessibility. This might occur if it cannot find nodes with the desired edge accessability or if the respective `TopoNode`s for the given nodes cannot be found.
pub fn add_edge_with_accessibility(
&mut self,
edge_id: EdgeId,
from_node_id: NodeId,
to_node_id: NodeId,
accessability: Accessability,
) -> (EdgeIndex, EdgeIndex) {
let direction = match &accessability {
Accessability::ReachableNodes(_) => (Direction::Incoming, Direction::Outgoing),
Accessability::UnreachableNodes(_) => (Direction::Outgoing, Direction::Incoming),
};
let nodes = match &accessability {
Accessability::ReachableNodes(nodes) => nodes,
Accessability::UnreachableNodes(nodes) => nodes,
};
let u1 = self.find_node_index_with_edges(from_node_id, nodes.clone(), direction.0);
let v1 = self.find_node_index_with_edges(to_node_id, nodes.clone(), direction.1);
if let (Some(u1), Some(v1)) = (u1, v1) {
let u2 = self.get_other_toponode(u1);
let v2 = self.get_other_toponode(v1);
if let (Some(u2), Some(v2)) = (u2, v2) {
let from_node_id = *self.index_to_id.get(&u1).unwrap();
let to_node_id = *self.index_to_id.get(&v1).unwrap();
let topo_edge1 = TopoEdge {
id: EdgeIndex::new(0), // Temporary value; will be updated
from: from_node_id,
to: to_node_id,
edge_id,
};
let topo_edge1_id = self.graph.add_edge(u1, v1, topo_edge1);
self.graph.edge_weight_mut(topo_edge1_id).unwrap().id = topo_edge1_id;
let topo_edge2 = TopoEdge {
id: EdgeIndex::new(0), // Temporary value; will be updated
from: to_node_id,
to: from_node_id,
edge_id,
};
let topo_edge2_id = self.graph.add_edge(v2, u2, topo_edge2);
self.graph.edge_weight_mut(topo_edge2_id).unwrap().id = topo_edge2_id;
return (topo_edge1_id, topo_edge2_id);
}
}
unreachable!("Could not add edge with accessibility");
}
/// Checks if a node has an incoming edge in the topological graph.
///
/// # Arguments
///
/// * `node` - The ID of the node to check.
///
/// # Returns
///
/// * `bool` - `true` if the node has at least one incoming edge, `false` otherwise.
pub fn has_incoming(&self, node: NodeIndex) -> bool {
self.graph
.neighbors_directed(node, petgraph::Incoming)
.next()
.is_some()
}
/// Reverse the direction of a given edge.
///
/// # Arguments
///
/// * `edge_index` - The index of the edge to reverse.
///
/// # Panics
///
/// This function will panic if the edge does not exist in the graph.
pub fn reverse_edge(&mut self, edge_index: EdgeIndex) {
let (source, target) = self.graph.edge_endpoints(edge_index).unwrap();
let weight = self.graph.edge_weight(edge_index).unwrap().clone();
self.graph.remove_edge(edge_index);
self.graph.add_edge(target, source, weight);
}
/// Returns the indices of edges between two nodes in all directions.
///
/// # Arguments
///
/// * `node1_id` - The ID of the first node.
/// * `node2_id` - The ID of the second node.
///
/// # Returns
///
/// * `Option<(EdgeIndex, EdgeIndex)>` - The indices of the two edges between the nodes, if they exist.
///
/// # Panics
///
/// This function will panic if the nodes do not exist in the graph.
pub fn find_edge_indices(
&self,
node1_id: NodeId,
node2_id: NodeId,
) -> Option<(EdgeIndex, EdgeIndex)> {
let (node1_index1, node1_index2) = self.id_to_index(node1_id).unwrap();
let (node2_index1, node2_index2) = self.id_to_index(node2_id).unwrap();
let mut edges = Vec::new();
for &source_index in &[node1_index1, node1_index2] {
for &target_index in &[node2_index1, node2_index2] {
if let Some(edge) = self.graph.find_edge(*source_index, *target_index) {
edges.push(edge);
}
if let Some(edge) = self.graph.find_edge(*target_index, *source_index) {
edges.push(edge);
}
}
}
if edges.len() == 2 {
Some((edges[0], edges[1]))
} else {
None
}
}
/// Checks if an edge is in the same direction as its neighboring edges.
///
/// # Arguments
///
/// * `edge_index` - The `EdgeIndex` of the edge to check.
///
/// # Returns
///
/// * `bool` - `true` if the edge is in the same direction as its neighboring edges, `false` otherwise.
///
/// # Panics
///
/// This function will panic if the `EdgeIndex` does not exist in the graph.
pub fn edge_is_in_neighbors_direction(&self, edge_index: EdgeIndex) -> bool {
let (source, target) = self.graph.edge_endpoints(edge_index).unwrap();
// Check if the source's neighbors are in the same direction
let source_has_same_direction = self
.graph
.neighbors_directed(source, petgraph::Direction::Incoming)
.any(|neighbor| neighbor != target);
let target_has_same_direction = self
.graph
.neighbors_directed(target, petgraph::Direction::Outgoing)
.any(|neighbor| neighbor != source);
source_has_same_direction && target_has_same_direction
}
}
impl Default for TopologyGraph {
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
mod tests {
use petgraph::dot::Dot;
use super::*;
#[test]
fn test_topology_graph() {
let mut topo_graph = TopologyGraph::new();
let node_id1 = 1;
let node_id2 = 2;
let (added_node_id1_1, added_node_id1_2) = topo_graph.add_node(node_id1);
let (added_node_id2_1, added_node_id2_2) = topo_graph.add_node(node_id2);
// Each call to add_node() adds two nodes, so the total node count should be 4.
assert_eq!(topo_graph.graph.node_count(), 4);
let edge_id1 = 1;
let topo_edge = TopoEdge {
id: EdgeIndex::new(0),
from: node_id1,
to: node_id2,
edge_id: edge_id1,
};
topo_graph
.graph
.add_edge(added_node_id1_1, added_node_id2_1, topo_edge.clone());
topo_graph
.graph
.add_edge(added_node_id2_2, added_node_id1_2, topo_edge);
assert_eq!(topo_graph.graph.edge_count(), 2);
// Test if has_incoming works as expected
assert_eq!(topo_graph.has_incoming(added_node_id2_1), true);
assert_eq!(topo_graph.has_incoming(added_node_id1_1), false);
assert_eq!(topo_graph.has_incoming(added_node_id1_2), true);
assert_eq!(topo_graph.has_incoming(added_node_id2_2), false);
}
#[test]
fn test_no_edges_in_direction() {
// Create a new TopologyGraph
let mut graph = TopologyGraph::new();
// Define some nodes
let node1 = 1;
let node2 = 2;
let node3 = 3;
// Add nodes to the graph
let node1_id = graph.add_node(node1);
let node2_id = graph.add_node(node2);
let _node3_id = graph.add_node(node3);
// Add edges to the graph
let edge_id1 = 1;
let edge_id2 = 2;
graph.add_edge(edge_id1, node1, node2);
graph.add_edge(edge_id2, node1, node3);
// Check that there are outgoing edges from node1_id.0 to node2
assert_eq!(
graph.no_edges_in_direction(node1_id.0, vec![node2], Direction::Outgoing),
false
);
// Check that there are outgoing edges from node1_id.0 to node2 and node3
assert_eq!(
graph.no_edges_in_direction(node1_id.0, vec![node2, node3], Direction::Outgoing),
false
);
// Check that there are no outgoing edges from node2_id.1 to node1
assert_eq!(
graph.no_edges_in_direction(node2_id.0, vec![node1], Direction::Outgoing),
true
);
}
#[test]
fn test_find_node_index_with_edges() {
// Create a new TopologyGraph
let mut graph = TopologyGraph::new();
// Define some nodes and edges
let node1 = 1;
let node2 = 2;
let node3 = 3;
let node4 = 4;
// Add nodes and edges to the graph
let topo_node1 = graph.add_node(node1);
let topo_node2 = graph.add_node(node2);
let topo_node3 = graph.add_node(node3);
let topo_node4 = graph.add_node(node4);
graph.add_edge(1, node1, node2);
graph.add_edge(2, node1, node3);
graph.add_edge(3, node2, node3);
graph.add_edge(4, node3, node4);
// Check if the function works as expected
assert_eq!(
graph.find_node_index_with_edges(node1, vec![node2, node3], Direction::Outgoing),
Some(topo_node1.0)
);
assert_eq!(
graph.find_node_index_with_edges(node2, vec![node1, node3], Direction::Incoming),
Some(topo_node2.0)
);
assert_eq!(
graph.find_node_index_with_edges(node3, vec![node2, node4], Direction::Outgoing),
Some(topo_node3.0)
);
assert_eq!(
graph.find_node_index_with_edges(node4, vec![node3], Direction::Incoming),
Some(topo_node4.0)
);
}
#[test]
fn test_get_other_toponode() {
let mut topo_graph = TopologyGraph::new();
// Add some nodes to the graph
let node_id1: NodeId = 1;
let node_id2: NodeId = 2;
let (topo_node_id1_1, topo_node_id1_2) = topo_graph.add_node(node_id1);
let (topo_node_id2_1, topo_node_id2_2) = topo_graph.add_node(node_id2);
// Assert that get_other_toponode returns the correct other TopoNode
assert_eq!(
topo_graph.get_other_toponode(topo_node_id1_1),
Some(topo_node_id1_2)
);
assert_eq!(
topo_graph.get_other_toponode(topo_node_id1_2),
Some(topo_node_id1_1)
);
assert_eq!(
topo_graph.get_other_toponode(topo_node_id2_1),
Some(topo_node_id2_2)
);
assert_eq!(
topo_graph.get_other_toponode(topo_node_id2_2),
Some(topo_node_id2_1)
);
// For non-existing NodeIndex, the function should return None
assert_eq!(topo_graph.get_other_toponode(NodeIndex::new(100)), None);
}
#[test]
fn test_add_edge_with_accessibility() {
let mut topo_graph = TopologyGraph::new();
// Add some nodes to the graph
let node_id1 = 1;
let node_id2 = 2;
topo_graph.add_node(node_id1);
topo_graph.add_node(node_id2);
// Add an edge with accessibility
let edge_id = 1;
let accessability = Accessability::ReachableNodes(vec![node_id1, node_id2]);
let (edge_index1, edge_index2) =
topo_graph.add_edge_with_accessibility(edge_id, node_id1, node_id2, accessability);
// Assert that the edge has been added correctly
assert!(topo_graph.graph.edge_weight(edge_index1).is_some());
assert!(topo_graph.graph.edge_weight(edge_index2).is_some());
println!("{}", Dot::new(&topo_graph.graph));
let edge_indices = topo_graph.find_edge_indices(1, 2);
assert_eq!(edge_indices.is_some(), true);
assert_eq!(edge_indices.unwrap().0, EdgeIndex::new(0));
}
#[test]
fn test_add_edge_with_accessibility_scenario_reachable() {
let mut topo_graph = TopologyGraph::new();
// Add nodes to the graph
let node_ids: Vec<NodeId> = (0..5).collect();
for node_id in &node_ids {
topo_graph.add_node(*node_id);
}
// Add edge from 4 to 0
let edge_id = 1;
let accessability = Accessability::ReachableNodes(vec![node_ids[0]]);
topo_graph.add_edge_with_accessibility(edge_id, node_ids[4], node_ids[0], accessability);
// Add edges from 1 to 2 and 1 to 3
let edge_id = 2;
let accessability = Accessability::ReachableNodes(vec![]);
topo_graph.add_edge_with_accessibility(
edge_id,
node_ids[1],
node_ids[2],
accessability.clone(),
);
let edge_id = 3;
topo_graph.add_edge_with_accessibility(edge_id, node_ids[1], node_ids[3], accessability);
// Add edge from 0 to 1
let edge_id = 4;
let accessability =
Accessability::ReachableNodes(vec![node_ids[4], node_ids[2], node_ids[3]]);
topo_graph.add_edge_with_accessibility(edge_id, node_ids[0], node_ids[1], accessability);
// Assert that all edges have been added correctly
for i in 1..=4 {
let edge_index1 = EdgeIndex::new(i * 2 - 2);
let edge_index2 = EdgeIndex::new(i * 2 - 1);
assert!(topo_graph.graph.edge_weight(edge_index1).is_some());
assert!(topo_graph.graph.edge_weight(edge_index2).is_some());
}
}
#[test]
fn test_add_edge_with_accessibility_scenario_unreachable() {
let mut topo_graph = TopologyGraph::new();
// Add nodes to the graph
let node_ids: Vec<NodeId> = (0..4).collect();
for node_id in &node_ids {
topo_graph.add_node(*node_id);
}
let node_idx0 = topo_graph.id_to_index.get(&node_ids[0]).unwrap().clone();
let node_idx1 = topo_graph.id_to_index.get(&node_ids[1]).unwrap().clone();
let node_idx2 = topo_graph.id_to_index.get(&node_ids[2]).unwrap().clone();
let node_idx3 = topo_graph.id_to_index.get(&node_ids[3]).unwrap().clone();
let topo_edge = TopoEdge {
id: EdgeIndex::new(0),
from: node_ids[0],
to: node_ids[1],
edge_id: 1,
};
// Add edge from 0 to 1
topo_graph
.graph
.add_edge(node_idx0.0, node_idx1.0, topo_edge.clone());
topo_graph
.graph
.add_edge(node_idx1.1, node_idx0.1, topo_edge.clone());
let topo_edge = TopoEdge {
id: EdgeIndex::new(0),
from: node_ids[1],
to: node_ids[2],
edge_id: 2,
};
topo_graph
.graph
.add_edge(node_idx1.0, node_idx2.0, topo_edge.clone());
topo_graph
.graph
.add_edge(node_idx2.1, node_idx1.1, topo_edge.clone());
// Add edge from 1 to 3
let edge_id = 3;
let accessability = Accessability::UnreachableNodes(vec![node_ids[2]]);
topo_graph.add_edge_with_accessibility(
edge_id,
node_ids[1].clone(),
node_ids[3].clone(),
accessability,
);
assert!(
topo_graph
.graph
.find_edge(node_idx1.0, node_idx3.0)
.is_some()
|| topo_graph
.graph
.find_edge(node_idx1.0, node_idx3.1)
.is_some()
);
// Assert that all edges have been added correctly
for i in 1..=3 {
let edge_index1 = EdgeIndex::new(i * 2 - 2);
let edge_index2 = EdgeIndex::new(i * 2 - 1);
assert!(topo_graph.graph.edge_weight(edge_index1).is_some());
assert!(topo_graph.graph.edge_weight(edge_index2).is_some());
}
}
#[test]
fn test_default() {
let topo_graph = TopologyGraph::default();
// Ensure that the graph is empty
assert_eq!(topo_graph.graph.node_count(), 0);
assert_eq!(topo_graph.graph.edge_count(), 0);
assert_eq!(topo_graph.id_to_index.len(), 0);
assert_eq!(topo_graph.index_to_id.len(), 0);
}
#[test]
fn test_reverse_edge() {
let mut topo_graph = TopologyGraph::default();
let node1 = topo_graph.add_node(1);
let node2 = topo_graph.add_node(2);
let edge_index = topo_graph.add_edge(33, 1, 2);
// Ensure that the edge is initially from node1 to node2
assert_eq!(
topo_graph.graph.edge_endpoints(edge_index.0),
Some((node1.0, node2.0))
);
topo_graph.reverse_edge(edge_index.0);
assert_eq!(
topo_graph.graph.edge_endpoints(edge_index.0),
Some((node2.0, node1.0))
);
}
}